A matrix is in row echelon form if and only if
the first (leftmost) non-zero entry in each row is 1 (called the leading 1),
the leading 1 in each row (except row 1) is to the right of the leading 1 in the row above it, and all rows which contain only 0 are below all rows which contain any non-zero entry.

A matrix in REF corresponds to a system of equations that needs only back-substitution to solve.

Are these matrices in REF ? If not, why not ?
$\left[\begin{array}{rrrrr}1 & 3 & 0 & -2 & 4 \\ 0 & 1 & 7 & 4 & 0 \\ 0 & 0 & -1 & 5 & 6 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]\left[\begin{array}{rrrrr}1 & 3 & 0 & -2 & 4 \\ 0 & 1 & 7 & 4 & 0 \\ 0 & 1 & 4 & -3 & -2 \\ 0 & 0 & 1 & 1 & 3\end{array}\right]\left[\begin{array}{rrrrr}1 & 3 & 0 & -2 & 4 \\ 0 & 1 & 7 & 0 & 0 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]\left[\begin{array}{rrrrr}1 & 3 & 0 & -2 & 4 \\ 0 & 1 & 7 & 4 & 0 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Reduced Row Echelon Form (RREF)

A matrix is in reduced row echelon form if and only if
it is in row echelon form,
and all columns which contain a leading 1 contain only 0 in all other entries.

A matrix in RREF corresponds to a system of equations that needs the least amount of algebra to solve.

Are these matrices in RREF ? If not, why not ?
$\left[\begin{array}{rrrrr}1 & 0 & -1 & -2 & 4 \\ 0 & 1 & 0 & 4 & 0 \\ 0 & 0 & 1 & 5 & 6 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{rrrrr}1 & 0 & 0 & 0 & 4 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -2 \\ 0 & 0 & 0 & 1 & 3\end{array}\right]\left[\begin{array}{rrrrr}1 & 0 & -3 & 0 & 4 \\ 0 & 1 & 8 & 0 & 0 \\ 0 & 0 & 0 & 1 & 6 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Gaussian Elimination Pivot Method
Step 1: Find the first (leftmost) column which contains a non-zero entry
Step 2: Choose a pivot in that column (to be used to replace all lower entries in that column with 0)
Step 3: SWAP to move the pivot's row to the top
Step 4: SCALE to turn the pivot into 1
Step 5: REPLACE each row below the pivot's row
by adding the multiple of the pivot's row which gives a 0 under the pivot
Step 6: Cover up the pivot's row \& repeat the entire process (stop when matrix is in row echelon form)

Gauss-Jordan Elimination (after matrix is in row echelon form)
Step 7: Find the last (rightmost) column which contains a pivot (leading 1)
Step 8: REPLACE each row above the pivot's row by adding the multiple of the pivot's row which gives a 0 above the pivot
Step 9: Cover up the pivot's row \& repeat the entire process (stop when matrix is in reduced row echelon form)

The following examples should not require fractions if solved using the processes above.

Example 1:
$3 x+2 y-z=-1$
$5 x+y-3 z=-2$
$2 x+4 y+2 z=2$
Example 4:
$3 x+5 y-9 z=14$
$2 x-3 y+13 z=3$
$-x+2 y-8 z=-1$

Example 2:
$4 x+6 y-3 z=-15$
$3 x+4 y+z=11$
$-x-2 y+z=1$

Example 3:
$3 x+4 y-11 z=-17$
$2 \mathrm{x}+\mathrm{y}-4 \mathrm{z}=5$
$-x-2 y+5 z=-9$

Example 5:
$2 x+4 y+11 z=10$
$x+2 y+7 z=5$
$3 x+4 y+9 z=13$

Example 1:

CHOOSE 2 in column 1, row 3 as pivot (to avoid fractions after scaling)
$\left[\begin{array}{rrr|r}3 & 2-1 & -1 \\ 5 & 1-3 & -2 \\ 2 & 4 & 2 & 2\end{array}\right] R_{1} \leftrightarrow R_{3} \quad \Rightarrow \quad\left[\begin{array}{rrr|r}2 & 4 & 2 & 2 \\ 5 & 1-3 & -2 \\ 3 & 2-1 & -1\end{array}\right] R_{1} \times \frac{1}{2}$
SWAP to move pivot to top row

SCALE to turn pivot into 1
$\Rightarrow \quad\left[\begin{array}{rrr|r}1 & 2 & 1 & 1 \\ 5 & 1 & -3 & -2 \\ 3 & 2 & -1 & -1\end{array}\right] \begin{aligned} & R_{2}+(-5) R_{1} \\ & R_{3}+(-3) R_{1}\end{aligned} \quad \Rightarrow$
REPLACE to eliminate all entries below pivot

COVER row 1 until matrix in REF
CHOOSE -4 in column 2, row 3 as pivot (to avoid fractions after scaling)
$\begin{array}{ll}{\left[\begin{array}{rrr|r}1 & 2 & 1 & 1 \\ 0 & -9 & -8 & -7 \\ 0 & -4 & -4 & -4\end{array}\right] R_{2} \leftrightarrow R_{3}}\end{array} \quad \Rightarrow \quad\left[\begin{array}{rrr|r}1 & 2 & 1 & 1 \\ 0-4 & -4 & -4 \\ 0-9 & -8 & -7\end{array}\right] R_{2} \times \frac{1}{-4}$
$\Rightarrow\left[\begin{array}{rrr|r}1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0-9 & -8 & -7\end{array} R_{3}+(9) R_{2} \quad \Rightarrow\right.$
REPLACE to eliminate all entries below pivot

COVER row 2 until matrix in REF
CHOOSE 1 in column 3, row 3 as pivot
$\left[\begin{array}{lll|l}1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]$
SWAP to move pivot to top row
UNNECESSARY

$$
\Rightarrow \quad\left[\begin{array}{lll|l}
1 & 2 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \mathrm{REF}
$$

SCALE to turn pivot into 1
UNNECESSARY

COVER row 3 until matrix in RREF
Rightmost leading 1 in column 2 is pivot

$$
\left[\begin{array}{rrr|r}
1 & 2 & 0 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right] R_{1}+(-2) R_{2} \quad \Rightarrow \quad\left[\begin{array}{lll|r}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 2
\end{array}\right] \text { RREF } \quad \Rightarrow \quad \begin{aligned}
& x=1 \\
& y=-1 \\
& z=2
\end{aligned}
$$

REPLACE to eliminate all entries above pivot

Rightmost leading 1 in column 3 is pivot
$\left[\begin{array}{lll|l}1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2\end{array}\right] \begin{array}{ll}R_{1}+(-1) R_{3} \\ R_{2}+(-1) R_{3}\end{array} \quad \Rightarrow$
REPLACE to eliminate all entries above pivot

COVER row 2 until matrix in RREF
\Uparrow
$\begin{array}{ll}3(1)+2(-1)-(2)=3-2-2= & 1 \\ \text { CHECK: } & 5(1)+(-1)-3(2)=5-1-6=-2 \\ 2(1)+4(-1)+2(2)=2-4+4=2\end{array}$

