Row Echelon Form (REF)

 A matrix is in row echelon form if and only if the first (leftmost) non-zero entry in each row is 1 (called the leading 1), the leading 1 in each row (except row 1) is to the right of the leading 1 in the row above it, and all rows which contain only 0 are below all rows which contain any non-zero entry.
 A matrix in REF corresponds to a system of equations that needs only back-substitution to solve.

Are these matrices in REF ? If not, why not ?

Γ	1	3	0	-2	4]	ſ	- 1	3	0	-2	4	ſ	- 1	3	0	-2	4]	[- 1	3	0	-2	4]
	0	1	7	4	0		0	1	7	4	0		0	1	7	0	0		0	1	7	4	0
	0	0	-1	5	6		0	1	4	-3	-2		0	0	1	0	-2		0	0	0	1	-2
	0	0	0	1	3		0	0	1	1	$ \begin{array}{c} 4\\ 0\\ -2\\ 3 \end{array} $		0	0	0	1	3		0	0	0	0	0

Reduced Row Echelon Form (RREF)

A matrix is in reduced row echelon form if and only if

it is in row echelon form,

and all columns which contain a leading 1 contain only 0 in all other entries.

A matrix in RREF corresponds to a system of equations that needs the least amount of algebra to solve.

Are these matrices in RREF? If not, why not?

Γ	1	0	-1	-2	4]	[1	0	0	0	4]	ſ	- 1	0	-3	0	4]	
	0	1	0	4	0	0	1	0	0	0		0	1	8	0	0	
	0	0	1	5	6	0	0	1	0	-2		0	0	0	1	6	
L	0	0	0	0	0	0	0	0	1	$ \begin{array}{c} 4\\ 0\\ -2\\ 3 \end{array} $		0	0	0	0	0	

Gaussian Elimination Pivot Method

- Step 1: Find the first (leftmost) column which contains a non-zero entry
- Step 2: Choose a pivot in that column (to be used to replace all lower entries in that column with 0)
- Step 3: SWAP to move the pivot's row to the top
- Step 4: SCALE to turn the pivot into 1
- Step 5: REPLACE each row below the pivot's row
 - by adding the multiple of the pivot's row which gives a 0 under the pivot
- Step 6: Cover up the pivot's row & repeat the entire process (stop when matrix is in row echelon form)

Gauss-Jordan Elimination (after matrix is in row echelon form)

- Step 7: Find the last (rightmost) column which contains a pivot (leading 1)
- Step 8: REPLACE each row above the pivot's row
 - by adding the multiple of the pivot's row which gives a 0 above the pivot
- Step 9: Cover up the pivot's row & repeat the entire process (stop when matrix is in reduced row echelon form)

The following examples should not require fractions if solved using the processes above.

Example 1:	Example 2:	Example 3:
3x + 2y - z = -1 5x + y - 3z = -2 2x + 4y + 2z = 2	4x + 6y - 3z = -153x + 4y + z = 11-x - 2y + z = 1	3x + 4y - 11z = -17 2x + y - 4z = 5 -x - 2y + 5z = -9
Example 4:	Example 5:	
3x + 5y - 9z = 14 2x - 3y + 13z = 3 -x + 2y - 8z = -1	2x + 4y + 11z = 10x + 2y + 7z = 53x + 4y + 9z = 13	

Example 1:

CHOOSE 2 in column 1, row 3 as pivot (to avoid fractions after scaling)

$$\begin{bmatrix} 3 & 2 - 1 | -1 \\ 5 & 1 - 3 - 2 \\ 2 & 4 & 2 | 2 \end{bmatrix} R_1 \leftrightarrow R_3 \implies$$

SWAP to move pivot to top row

COVER row 1 until matrix in REF CHOOSE -4 in column 2, row 3 as pivot (to avoid fractions after scaling)

$$\begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 - 9 - 8 - 7 \\ 0 - 4 - 4 - 4 \end{bmatrix} R_2 \leftrightarrow R_3$$

SWAP to move pivot to top row

COVER row 2 until matrix in REF CHOOSE 1 in column 3, row 3 as pivot

1	2	1	1	
0	1	1	1	
0	0	1	2	

SWAP to move pivot to top row UNNECESSARY

Rightmost leading 1 in column 3 is pivot

REPLACE to eliminate all entries above pivot

	3(1) + 2(-1) - (2) = 3 - 2 - 2 = 1
CHECK:	5(1) + (-1) - 3(2) = 5 - 1 - 6 = -2
	2(1) + 4(-1) + 2(2) = 2 - 4 + 4 = 2

$$\begin{bmatrix} 2 & 4 & 2 & 2 \\ 5 & 1-3-2 \\ 3 & 2-1-1 \end{bmatrix} R_1 \times \frac{1}{2}$$

SCALE to turn pivot into 1

 $\Rightarrow \begin{vmatrix} 1 & 2 & 1 & 1 \\ 0 - 4 - 4 - 4 \\ 0 - 9 - 8 - 7 \end{vmatrix} R_2 \times \frac{1}{-4}$

$$= \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 - 9 - 8 - 7 \end{bmatrix} R_3 + (9)R_2$$

$$= REPLACE \text{ to eliminate all entries}$$

$$= below \text{ pivot}$$

 $\Rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 \\ 5 & 1 - 3 - 2 \\ 3 & 2 - 1 - 1 \end{bmatrix} R_2 + (-5)R_1 \Rightarrow R_3 + (-3)R_1$

REPLACE to eliminate all entries

below pivot

 \Rightarrow

COVER row 2 until matrix in RREF

Γ	1	0	0 1]			<i>x</i> = 1
	0	1	0 - 1	RREF	\Rightarrow	y = -1
	0	0	1 2			z = 2

REPLACE to eliminate all entries above pivot

SCALE to turn pivot into 1

SCALE to turn pivot into 1

 $\Rightarrow \begin{bmatrix} 1 & 2 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 2 \end{bmatrix} \text{ REF}$

$$\begin{bmatrix} 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

1 2 $0 | -1 | R_1 + (-2)R_2$

UNNECESSARY

COVER row 3 until matrix in RREF

Rightmost leading 1 in column 2 is pivot

 \Rightarrow